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Today’s Life with Computing Systems
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Computlng System Life Cycle

“If anything can go
wrong ..
. it will | 2

[Murphy]
/
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What is the source of problems?

Failure

Rate Technology Scaling: « Faulty behaviors induced
Increasing by defects are more

wearout failures
|

Increasing transient

complicated
— Intermittent, transient

 Reduced life time
« Components are

Infant i  Normal lifetime becoming unreliable
mortality  ~ 3 to 15 years — Problems can appear
~ 1 to 20 weeks . .
Hamdiou DTIS 15 even during operational
life.... 00
V-
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What is the source of problems?

« Harsh Environment:

— Neutron radiations from cosmic rays, alpha particles

from packaging materials and environmental/design
variations are common causes of perturbations

— If the particle strike happens in the hold state of a
memory cell or in a flip-flop, the content of the storage
element is flipped, causing a soft-error or Single-
Event Upset (SEU)
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Example

Trinity (Los Alamos National Lab): 19,000 Xeon Phi ,

E -~ T —

High probability of
having a node
corrupted

Trinity Mean Time
Between Failure is
~12h*

*(data from SC’17)

A $
» Los Alamos
P. ReCh’S Courtesy NATIONA:STL_:);E:)RATORY UFRGS
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The problem

“random” failure

safety mechanism ﬁoch:
to reduce

the potential risk....
iIdancy




How to Quantify the Reliability

 Reliability metricsl'-2!:

Failure rate (4)

Mean Time To Failure (MTTF)

Mean Time Between Failure (MTBF)
Mean Work to Failure (MWTF)
Mean Instructions to Failure (MITF)

Architectural Vulnerability Factor (AVF): as the probability that a
fault in that particular structure will result in an error.

Failure In Time (FIT): defined as a failure rate of 1 per billion
hours. A component having a failure rate of 1 FIT is equivalent to
having an MTBF of 1 billion hours.

[1] IEEE Transactions on Dependable and Secure Computing, Vol. 1, N. 1, 2004
[2] IEEE Micro, 2003
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System-Level View
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Cross-Layer Reliability

Systgm Failure

Software | Software
masking | Virtual ISA
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Cross-Layer Reliability

TECHNOLOGY: DEVICE/CELL LEVEL FAULTS

» Radiation effects(soft-errors)
« Ageing (NBTI, HCI, electro-migration)
» Test escapes

ARCHITECTURE: ISA LEVEL FAULT MODELS

« Wrong data or instruction
» Control Flow Error
» Execution timing Error

SOFTWARE: COMPLEX FAILURE MECHANISMS

« SDC (Silent Data Corruption)
* DUE (Detected, Uncorrected)
* Interrupts, resets, safety fail-over

SYSTEM: USER VISIBLE FAULTS

« Server reboot
* Brake failure

_—S * Mission failure -




State-of-the-Art

Architectural Correct RTL

injection [3]

Execution (ACE) analysis &
Probabilistic models [1,2]

Simulation

Time Low High
Estimation Low/Medium High
Accuracy

[1] N.George, et. al. “Transient fault models and AVF estimation revisited”, DSN 2010
[2]N.J.Wang, et. al. “Examining ACE analysis reliability estimates using fault
injection”, ISCA 2007

[3]S. Mitra, ef. al. “CLEAR: Cross-Layer Exploration for Architecting Resilience”, DAC2016
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Statistical Fault Injection (SFI)

» Scenario:
« program of 1B (10°) dynamic instructions (SPEC benchmark)
» hardware structure of 10K bits (a physical reg.file)
 simulation throughput (microarchitecture) of 300K instructions/sec
 using 10 servers

Fault Injection

T
#Injections Campaign Time

1843  dweek

____-A

*

(Leveugle, et. al., DATE, 2009)
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Proposed Approach

* Divide et Impera approach:
— Target each component alone
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Proposed Approach

« How to combine the different results in order to
estimate the reliability at system level?

* We exploit a kind or reasoning approach

— Bayesian Nets: A statistical model representing
multivariate statistical distributions. They model
relations among random variables




S0 e il Bl g e g LU

Bayesian Nets

Qualitative Model

« Models the architecture of

the system:

 Nodes correspond to
components,

« Arcs define temporal or
physical relations among
components

intention/
motivation

understanding

interpr-

@ feazPeréé‘ﬁt‘bp )e/tat'on

Platform Task

&

Quantitative Model

 Models state probabilities

as a set of Conditional
Probability Tables (CPT).

P(c3=F|c1=F and c2=F)
Q e \ G

F [H
O
c 2|H
States 1 H| © F
H: fault-free 2| H
F: faulty
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System Modeling: Topology

Technology nodes model raw error

rates, environmental conditions, etfc.
14nm

FINFET

Hardware—

g HW blocks are nodes of the
Hm‘?.h"ji i

network. Complex blocks can
be split into sub blocks (e.g.,
UPC). Arcs are candidate error
propagation paths.

SW blocks (e.g., functions or portions
of a function) are nodes of the
network. Arcs are candidate error
propagation paths. Also concepts
such as concurrency can be easily
expressed.

_____-A




—

Example

Technology_Internal_Registers Technology_L1 Technology_L2

Branch Target
Buffer (BTB)

Image
processing
embedded

system




How does it work?

0 Global rel. analysis

System level reliability

inference (e.g., MTBF, MTTF,
FIT, etc.) taking into
account raw errors and

e N ropagation/masking of
Llerengf T NRS—<2< TN -
NSNS P
B QUIE
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How does it work?

Technology_Internal_Registers

Technology_L1

<
h“‘"&_
e
Evidence

¥ st
AL

™ - “\y P 7
susan_e es

Technology_L2

Branch Target
Buffer (BTB)
v/

g Forward inspection

Given the evidence that @
node is in a given state (i.e.,
failure) which is the
probability of
correctness/failure observed
at the application layer?




How does it work?
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e Backward inspection

Given the evidence that the
application fails, which are
the most probable roots of
failuree
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Validation

» Comparison with a uA Fault Injector [1]

 Case studies:

— MiBench [2] is a suite of open-source
software benchmarks that have been
extensively used in reliability studies

[1] GeFIN, IISWC 2015
[2] http://vhosts.eecs.umich.edu/mibench/
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Global rel. analysis
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Experiments

System Level FIT rate

Tl

Susan Smooth Susan Edges Susan Corners QSort String Search

® uA Fault Injection ¥ CLERECO Reliability Model




Experiments (hours of simulations)
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Backward inspection

Technology_Internal_Registers Technology_L1 Technology_L2
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Experiments
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Forward inspection
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|dentify the Best Implementation

?

WORST-COMPONENT SELECTION

ALTERNATIVE SELECTION

Cost Function
Evaluation




JPEG (MiBench)
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JPEG: Cost of Reliability
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Experiments
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Experiments
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Conclusions

* A Comprehensive solution for System-Level
Reliability analysis has been presented
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What's next

Not all errors are critical!

Sign Part Fraction Part
(1 bit) (52 bits)
I_L| |

|

et error can be in the
float intrinsic variance

Values in a given range are accepted as
correct in physical simulations
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What's next

Non-critical Error Critical Error

Golden




What’s Next

P. Rech’s Courtesy
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