Pessimistic Dependability Models Based on Hierarchical Markov Chains

Martin Kohlík, Hana Kubátová
martin.kohlik@fit.cvut.cz, hana.kubatova@fit.cvut.cz
CTU in Prague
Outline

- Motivation
- Dependability Models Reduction
- Hierarchical Markov Chain Models
- Partial Reduction
- Conclusions
Motivation

- **What?**
 - To calculate dependability parameters of complex systems based on dependable blocks

- **Why?**
 - To prove that our dependable designs can be used as railway equipment

- **How?**
 - Hierarchical dependability models based on Markov chains are used
 - Total hazard rate of the system is calculated
Motivation

- Simple dependability models
 - Easy to understand
 - Does not reflect the internal structure of the design

VS.

- Complex dependability models
 - More accurate
 - Grows rapidly in size
 - Complicated to read and modify
Dependability Models Reduction

Introduction

- Intended for non-renewable Markov chains
- Results into one hazard rate and its exponential failure distribution function (F(t))
- Inexact, but pessimistic
Dependability Models Reduction

Steps

- Calculate the exact failure distribution function

- Find an estimated hazard rate value
 - Fast estimation
 - The starting point of the next step

- Correct an estimated hazard rate to get pessimistic values
 - Find the lowest value
 - Numeric method meeting the required accuracy
Dependability Models Reduction

Case study

- **Modified Duplex System (MDS)**
 - Based on two independent modules with parity checkers attached
 - Able to detect faults by parity checkers and by comparators

![Diagram of dependability model](image)
Dependability Models Reduction
Case study

- Estimation step
Dependability Models Reduction
Case study

- Correction step

![Graph showing failure distribution function F(t)]
Hierarchical Markov Chain Models

Introduction

- Allow modeling advanced redundancy techniques of the blocks in the same way as Markov chains
- Allow separate calculations of low- and high-level models
- Allow avoidance of the state explosion
Hierarchical Markov Chain Models
Case study

- Case study system
 - Up to 17 identical dependable blocks (Modified Duplex System – MDS)
 - N-modular redundant system (NMR) configuration

- Classic complex model
 - Up to cca. 25000 states

- Hierarchical Model
 - 2 linked models
 - top NMR model – up to 10 states
 - a model of the block – 6 states
Hierarchical Markov Chain Models
Case study
Hierarchical Markov Chain Models
Case study – Results

<table>
<thead>
<tr>
<th>NMR blocks</th>
<th>No. of states</th>
<th>Exact solution [s]</th>
<th>Hierarchical solution [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>n1(MDS)</td>
<td>6</td>
<td>0.016</td>
<td>0.139</td>
</tr>
<tr>
<td>n3</td>
<td>55</td>
<td>0.062</td>
<td>0.251</td>
</tr>
<tr>
<td>n5</td>
<td>246</td>
<td>0.218</td>
<td>0.248</td>
</tr>
<tr>
<td>n7</td>
<td>771</td>
<td>0.671</td>
<td>0.247</td>
</tr>
<tr>
<td>n9</td>
<td>1,946</td>
<td>2.590</td>
<td>0.247</td>
</tr>
<tr>
<td>n11</td>
<td>4,242</td>
<td>8.830</td>
<td>0.250</td>
</tr>
<tr>
<td>n13</td>
<td>8,316</td>
<td>24.24</td>
<td>0.246</td>
</tr>
<tr>
<td>n15</td>
<td>15,042</td>
<td>96.58</td>
<td>0.252</td>
</tr>
<tr>
<td>n17</td>
<td>25,542</td>
<td>391.7</td>
<td>0.255</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n99</td>
<td>-</td>
<td>ca. 10^{17} years*</td>
<td>0.248</td>
</tr>
</tbody>
</table>
Hierarchical Markov Chain Models
Case study – Results

- NMR17 system results
Partial reduction

Introduction

- Pessimistic until specified time or probability limit value
 - Result hazard rate cannot be used beyond this limit value
 - Provides maximal operational time (warranty period) of the system

- More accurate

- Same speedup as unlimited method
Partial reduction
Case study – Time limited results

- NMR17 system results – $t_{\text{limit}} = 200,000$ hours (ca. 22 years)
- Hazard rates: 23.8×10^{-6} vs. 0.5×10^{-6} (ca. 40x lower)

![Failure distribution function](image)
Partial reduction
Case study – Probability limited results

- NMR17 system results – $p_{\text{limit}} = 0.35$
- Hazard rates: 23.8×10^{-6} vs. 1.6×10^{-6} (ca. 15x lower)
Conclusions

- **Reduction of Markov chains**
 - Intended for non-renewable Markov chains
 - Inexact, but pessimistic
 - Results into one hazard rate and its failure distribution function \(F(t) \)

- **The hierarchical dependability models**
 - Based on Markov chains and reduction
 - Nearly constant reduction time (vs. exponential growth with the number of low-level blocks in exact model)

- **Partial reduction**
 - More accurate
 - Same speedup as unlimited reduction
 - Provides maximal operational time (warranty period) of the system
 - Can be modified to be limited by the prescribed hazard rate