

Pessimistic Dependability Models Based on Hierarchical Markov Chains

Martin Kohlík, Hana Kubátová <u>martin.kohlik@fit.cvut.cz</u>, <u>hana.kubatova@fit.cvut.cz</u> CTU in Prague



Outline

Motivation

- Dependability Models Reduction
- Hierarchical Markov Chain Models
- Partial Reduction
- Conclusions

Motivation

What?

To calculate dependability parameters of complex systems based on dependable blocks

Why?

To prove that our dependable designs can be used as railway equipment

How?

- □ Hierarchical dependability models based on Markov chains are used
- Total hazard rate of the system is calculated

Motivation

Simple dependability models

- Easy to understand
- Does not reflect the internal structure of the design

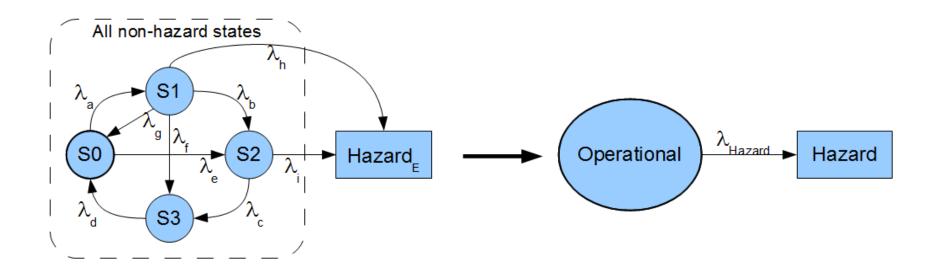
VS.

Complex dependability models

- □ More accurate
- □ Grows rapidly in size
- Complicated to read and modify

Dependability Models Reduction Introduction

- Intended for non-renewable Markov chains
- Results into one hazard rate and its exponential failure distribution function (F(t))
- Inexact, but pessimistic



Dependability Models Reduction Steps

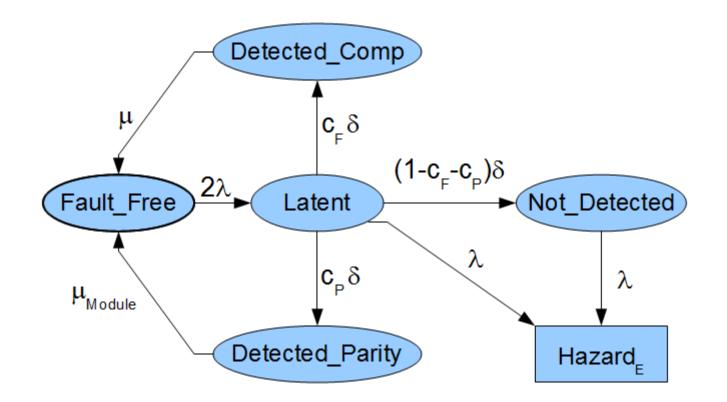
Calculate the exact failure distribution function

- Find an estimated hazard rate value
 - Fast estimation
 - □ The starting point of the next step

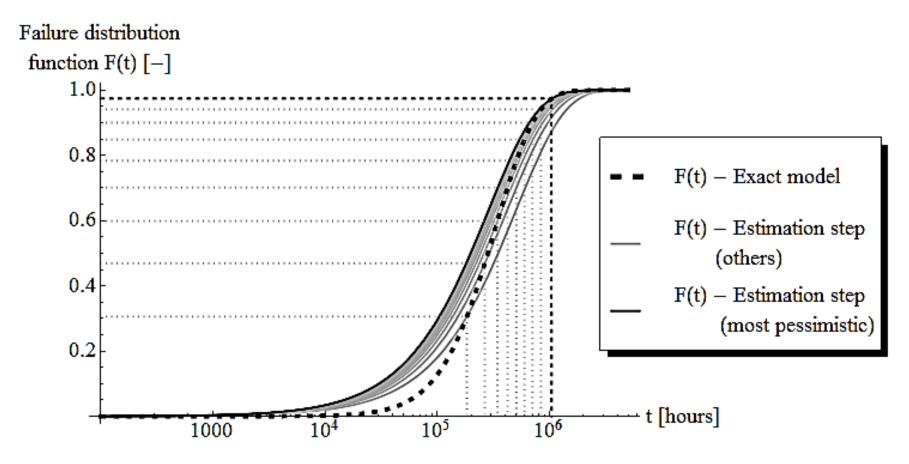
- Correct an estimated hazard rate to get pessimistic values
 - □ Find the lowest value
 - Numeric method meeting the required accuracy

Dependability Models Reduction Case study

- Modified Duplex System (MDS)
 - □ Based on two independent modules with parity checkers attached
 - □ Able to detect faults by parity checkers and by comparators

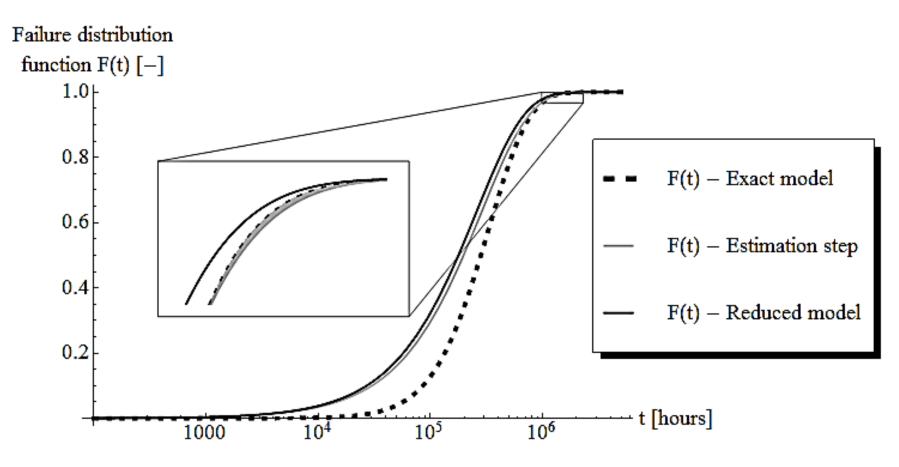


Dependability Models Reduction Case study



Dependability Models Reduction Case study

Correction step



Hierarchical Markov Chain Models Introduction

 Allow modeling advanced redundancy techniques of the blocks in the same way as Markov chains

Allow separate calculations of low- and high-level models

Allow avoidance of the state explosion

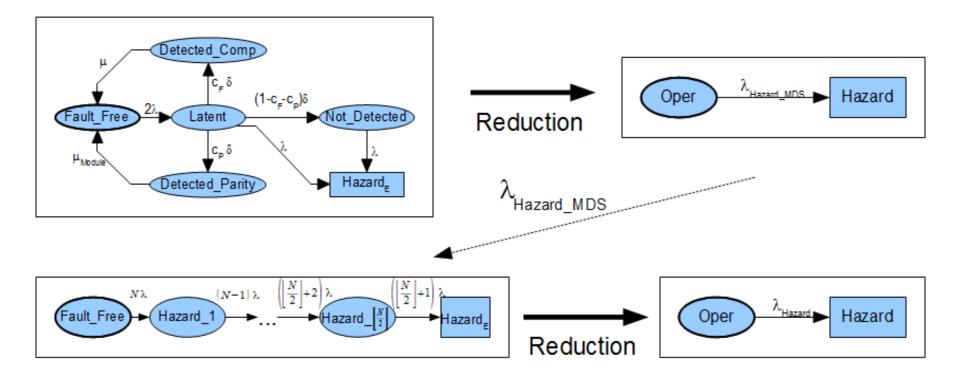
Hierarchical Markov Chain Models Case study

- Case study system
 - □ Up to 17 identical dependable blocks (Modified Duplex System MDS)
 - N-modular redundant system (NMR) configuration

- Classic complex model
 - Up to cca. 25000 states

- Hierarchical Model
 - 2 linked models
 - o top NMR model up to 10 states
 - o a model of the block 6 states

Hierarchical Markov Chain Models Case study

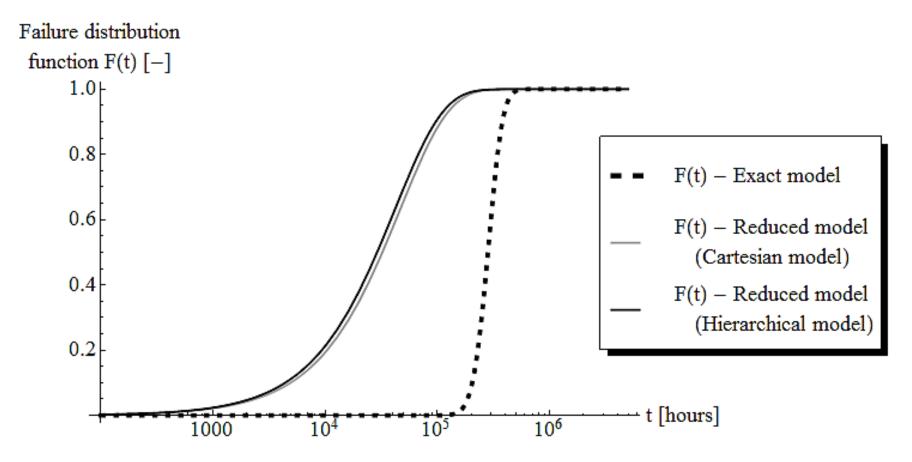


Hierarchical Markov Chain Models Case study – Results

NMR blocks	No. of states	Exact solution [s]	Hierarchical solution [s]
n1(MDS)	6	0.016	0.139
n3	55	0.062	0.251
n5	246	0.218	0.248
n7	771	0.671	0.247
n9	1,946	2.590	0.247
n11	4,242	8.830	0.250
n13	8,316	24.24	0.246
n15	15,042	96.58	0.252
n17	25,542	391.7	0.255
n99	-	ca. 10 ¹⁷ years*	0.248

Hierarchical Markov Chain Models Case study – Results

NMR17 system results

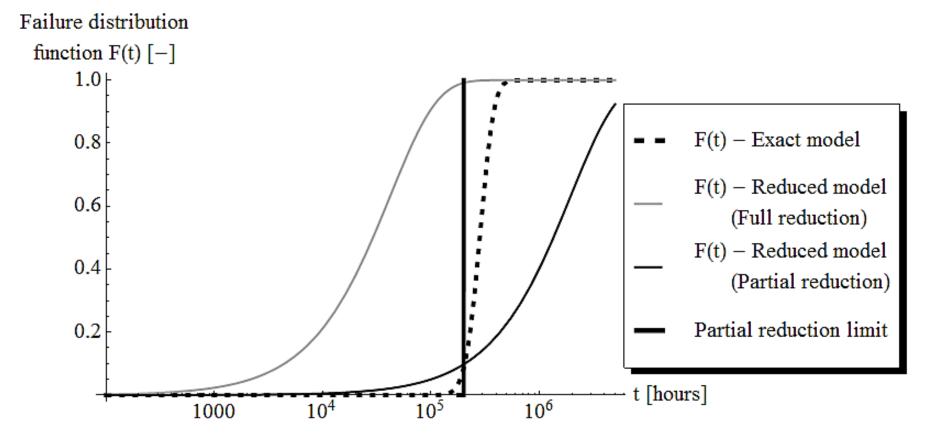


- Pessimistic until specified time or probability limit value
 - Result hazard rate cannot be used beyond this limit value
 - □ Provides maximal operational time (warranty period) of the system

- More accurate
- Same speedup as unlimited method

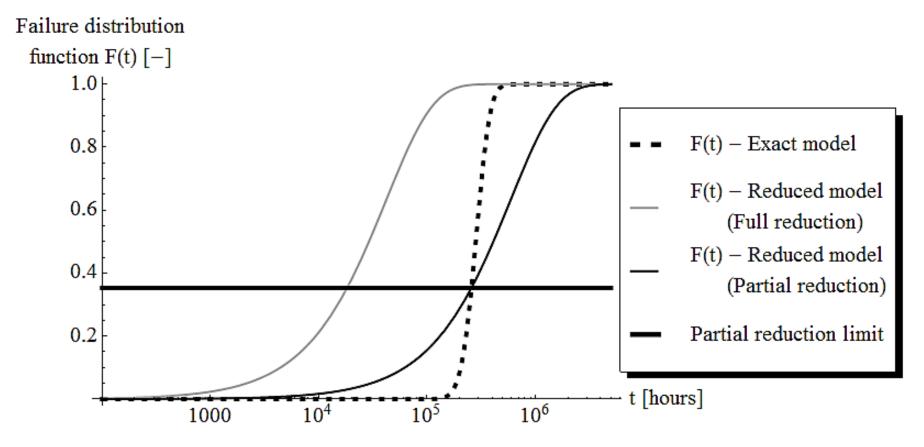
Partial reduction Case study – Time limited results

NMR17 system results - t_{limit} = 200,000 hours (ca. 22 years)
Hazard rates: 23.8 × 10⁻⁶ vs. 0.5 × 10⁻⁶ (ca. 40x lower)



Partial reduction Case study – Probability limited results

- NMR17 system results $p_{\text{limit}} = 0.35$
- Hazard rates: 23.8×10^{-6} vs. 1.6×10^{-6} (ca. 15x lower)



Conclusions

Reduction of Markov chains

- Intended for non-renewable Markov chains
- □ Inexact, but pessimistic
- Results into one hazard rate and its failure distribution function (F(t))
- The hierarchical dependability models
 - Based on Markov chains and reduction
 - Nearly constant reduction time (vs. exponential grow with the number of low-level blocks in exact model)

Partial reduction

- □ More accurate
- □ Same speedup as unlimited reduction
- Provides maximal operational time (warranty period) of the system
- Can be modified to be limited by the prescribed hazard rate