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Abstract— The study focused on three different measures of 
cognitive complexity: Minimal Description (MD), Structural 
Complexity (SC) and Mental Model (MM). With respect to these 
complexity measures, the relationship between symmetry (S), 
linearity (L) and monotony (M) of Boolean concepts and the 
different complexity measures presented. Effect of properties of 
Boolean functions on three different measures of cognitive 
complexity is studied on solving problems of Boolean recognition 
and Boolean reconstruction. 
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An important issue of the theory of concept learning is the 
ability to predict the difficulty in learning different types of 
concepts. Difficulties in learning Boolean concepts have been 
studied extensively by Shepard, Hovland, and Jenkins (SHJ) 
[1]. This study focused on Boolean concepts with three binary 
variables, where the concept receives value “1” for 4 out of 8 
possible combinations and value “0” for the remaining 4 
combinations. Some of the 70 possible Boolean concepts are 
congruent (NPN-equivalent). They can be divided into six 
subcategories. The six SHJ subcategories can be represented 
graphically as follows (Fig 1). 

Results of the SHJ study are significant since SHJ 
formulated two informal hypotheses. The first hypothesis states 
that the number of literals in the minimal expression 
corresponds to the level of concept’s cognitive complexity. 

Fig. 1.  SHJ category types. 

The second hypothesis states that ranking the cognitive 
complexity among the concepts in each type depends on the 
number of binary variables in the concept. Feldman [2], based 
on the conclusions from the SHJ study, defined a quantitative 
relationship between the level of the cognitive complexity of 
Boolean concepts. According to [2], the complexity measure of 
a Boolean concept is the number of literals in the minimal SOP 
expression that represents the concept. Since there are several 

minimization techniques, Vigo [3] proposed using the specific 
Quine-McCluskey (QM) technique to obtain the minimal 
description (MD). The definition of the Boolean concept’s 
complexity as a minimal number of literals in a minimal 
expression has two following drawbacks.  

1. Since the complexity is defined as the number of literals in 
the minimal expression and the expressions can be minimized 
using different techniques, a single complexity cannot be 
obtained.  

2. Studies show that the Boolean concept “xor” is learned and 
acquired as a concept by humans to not harder than the 
Boolean concept “or”. 

    Aware of the above issues, Vigo [4], developed an 
alternative approach for calculating the complexity of a 
Boolean concept by defining a so-called structural complexity 
(SC). The approach is based on a Boolean derivative. Vigo’s 
account of the invariance of concepts, as he acknowledges, 
does not specify how individuals learn concepts. He assumes 
that cognitive processes could detect invariances by comparing 
a set of instances to the set yielded by the partial derivative of 
each variable. Calculations at the foundation of the approach 
are complex.  Mental processes are not taken into account at 
the foundation of the calculations. SC approach do not 
comprise a mental representation of concepts or processes.  

    As an alternative to the complexity theories presented 
above that predict the difficulty in learning Boolean concepts, a 
Mental Model (MM) complexity theory [5] is proposed. The 
MM theory presumes that the mind is not logical and also not a 
probability system but rather, in essence, it conducts 
simulations. The theory applies to inclusion thinking and it 
presumes that when people think, they are attempting to 
imagine the possibilities of the presumptions that they must 
address and they draw conclusions. Each of the combinations 
from all the possibilities that receive a “1” in the result is a 
MM. When people learn the concepts they can minimize the 
number of mental models by cancelling irrelevant variables 
relative to other variables with a known logical value. The 
number of models of the concept that obtained after 
minimizing the irrelevant variables predict the difficulty of 
learning the concept and define the complexity measure of the 
concept’s degree of difficulty. 



 

    The recognition problem is can be modeled by using a 
visual representation of various objects of a common pattern. 
Solving the recognition problem may thus be considered as 
recognizing a visually represented Boolean concept, with 
further formulation of the concept. 

    The process of finding and reconstructing operating 
mechanisms in a given functional system of a digital electronic 
unit is defined as reconstructing (RE) [6]. RE problem means 
reconstructing a Boolean function implemented within a given 
“black box”. 

    The experiment was conducted in two stages for 13 
concepts, where each concept was described by means of a 
Boolean expression in Table 1. On the first stage, RE problems 
was examined using a black box that could be used to control 
the lighting of a bulb using independent switches. During the 
second stage, recognition problems (Fig 2) were examined 
using a questionnaire with 13 patterns, where each pattern 
represents one of the 13 concepts examined, respectively.                               

    Our paper deals with the question: What is the 
relationship between property of a Boolean concept and the 
cognitive complexity of the Boolean concepts? This question 
refers to the research hypothesis that properties of Boolean 
functions affect the complexity beyond the complexity 
measures that were presented. 

With regards to property of a Boolean concept, all the 
complexity measures that we relied on failed to predict the 
difficulty in solving reconstruction problems. Among the 
symmetric functions that were tested, the “xor” operator was 
more complex to solve in the two types of problems compared 
to other symmetric concepts that were examined. Monotonic 
and symmetrical concepts are the easiest solution. The 
structural complexity (SC) measures better predictor compared 
to the minimal description (MD) and Mental Model (MM), 
except concepts with properties of symmetry, linearity and 
monotonicity.    

    

Fig. 2. patterns for CN 1, 5 and 12 

 

 

 

 

 

Table 1. The 13 concepts were tested during the experiment and their 
descriptions according to MD minimal descriptions using “xor”, SC, MM and 
Property of Concept (S), (L) and (M). 
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SC  MD  Boolean Concept (CN) 

-  2  1.54  3   b a c 

-  3  2.14  4  
ac bc  

S+L  2  2.14  4 

(3)  
 a b ab a b    

S+M  3  2.14  5   a b c bc   

-  3  2.34  6 

(3)  
   a b c abc c ab     

-  3  2.79  5 

(3)  
 a bc b c a b c      

S  3  3  9 

(6)  
  c    b  b a b a b c a c b a c a c    

  

-  3  2.14  5   a b c bc   

S+L  3  2.95  10  
      a b d b c d a b c d   

S+L  4  4.00  10 

(3)  
    c+  b   a b c a b c b c a b c      

S+L  4  4.00  10 

(3)  
   b c+    ca b c a b c b a b c      

S+M  6  4.48  9     a b c d b d c cd      

S+M  6  4.48  9       a b c d b d c c d      


