
Hardware implementation of the CloudBus protocol

using FPGA

Kazimierz Krzywicki

Faculty of Electrical Engineering, Computer Science

and Telecommunications, University of Zielona Gora

Zielona Gora, Poland

k.krzywicki@weit.uz.zgora.pl

Grzegorz Andrzejewski

Faculty of Electrical Engineering, Computer Science

and Telecommunications, University of Zielona Gora

Zielona Gora, Poland

g.andrzejewski@iie.uz.zgora.pl

Abstract— In this paper, a CloudBus protocol for distributed

embedded systems is presented. It provides a control mechanism

for a number of processing units distributed in a network.

The paper demonstrates a hardware implementation

of a CloudBus protocol using FPGA. Furthermore, it considers

the resource usage depending on the FPGA platform.

Index Terms—Embedded Systems, Distributed Systems,

FPGA, CloudBus protocol

I. INTRODUCTION

Large and complex distributed embedded systems

are difficult to design and implementation [1, 3, 6]. Moreover

process synchronization in such systems are also complicated

which often results in high load of the communication

interfaces. CloudBus protocol [2, 7] proposed by authors

allows to significant saving in the amount of the transmitted

data between end modules of the distributed embedded system

[4, 5] (especially when compared with the Modbus RTU

or Profibus-DP protocol [7]). So far, the CloudBus protocol

was implemented and tested on the distributed microcontroller

platforms. This paper presents implementation of the CloudBus

protocol on the FPGA platform. The implementation and the

synthesis [3] was made using Hardware Description Language

(HDL) – Verilog, under two different development tools:

Xilinx ISE Design Suite 14.7 – synthesis to the following

devices: Kintex-7 (XC7K70T), Spartan 3E (XC3S1600E),

Virtex-6 (XC6VLX75T); Quartus II 13.1 – synthesis to the

following devices: Arria II GX (EP2AGX45DF29C4), Cyclone

IV E (EP4CE 115F23I8L), Cyclone V (5CGXFC7D7F27C8).

Comparison of the resource usage was made

for the different destination devices and development tools.

In Section II CloudBus protocol is presented, Section III

presents CloudBus protocol implementation with internal

modules description. Section IV discuss research results

for different FPGA devices. Section V, concludes the paper.

II. CLOUDBUS PROTOCOL

Presented CloudBus [2, 7] protocol (Fig.1) is one of the

methods of the data exchange and concurrent process

synchronization in the distributed systems. It realizes

decentralized (distributed) control method, where all of the

devices (modules), in designed system, are equal to each other.

CloudBus is based on the dependence, that, data are only

transferred between modules, when one of modules needs

information (shared resource) from the outside of its own

resource variables. Module sends (broadcasts) question to other

modules about the state of the specified variable,

e.g. (if y == 1?). The module which is responsible for this

variable, sends the answer to the system, if and only if quested

variable get previously quested state. This model

of the communication, allows to significant savings in the

amount of the transmitted data.

Fig. 1. Schematic diagram of the CloudBus protocol.

Basic data frame of the CloudBus protocol is shown

in Table I.

TABLE I. CLOUDBUS PROTOCOL FRAME

CNT FUNC VARS DATA CRC

Fields of the protocol corresponds to: CNT – 1 byte

for entire frame length; FUNC – command code (e.g. question

about condition or simple answer to other of the modules);

VARS and DATA represents binary array of the variables

and their states (values); CRC – 1 byte of the CRC error

checksum.

III. IMPLEMENTATION

The implementation of the CloudBus protocol in the FPGA

devices required dividing system functionality into dedicated

modules. Designed modules are shown in Fig. 2.

Fig. 2. Schematic diagram of the end module unit.

End module features:

 16 digital inputs/outputs

 4 analog inputs/outputs (16 bit)

 serial communication interface

 external clock input

A. RXD TIMER module

RXD TIMER module (Fig. 3) is double timer/counter.

First counter (clkHi) with higher frequency is used for the

sampling RXD INPUT line, second (slower) is used for the bit

read from RXD INPUT line. clkMain input is external CLK

clock input. hiRst and loRst are timer reset inputs.

Fig. 3. Schematic diagram of the RXD TIMER module.

B. RXD module

RXD module (Fig. 4) is responsible for incoming

communication from the outside of the end module. It retrieves

data from RXD INPUT by input RxD line. Input line

is sampled with clkHi clock frequency to check for incoming

transmission. When it detects incoming data, clkLo clock

counter is started for data read from RxD line and data bits

are saved to data register.

Furthermore, RXD module can reset timer by loRst output

or inform by received line about completed successful packet

receiving. Error line, delivers information about corruption

of the received data (parity/CRC checksum error).

Fig. 4. Schematic diagram of the RXD module.

C. RECEIVER BUFFER module

RECEIVER BUFFER module (Fig. 5) is 128-bit data

buffer for received data by RXD module. It merges all single

bytes to entire frame of the CloudBus protocol. Module

is synchronized by clk clock. Data incoming by 8-bit in input

and outgoing to PARSER module by 128-bit out output.

Additional reset input for resetting module and ready output

which gives information when buffer is full.

Fig. 5. Schematic diagram of the RECEIVER BUFFER module.

D. PARSER module

PARSER module (Fig. 6) is synchronized by clk input.

Data are received from RECEIVER BUFFER by 128-bit

in input. PARSRER module is responsible for parsing received

frame of the CloudBus protocol from RECEIVER BUFFER.

When parsing is done, without any errors (frame length check

and CRC checksum check) valid CloudBus data are set

to outputs: func, vars, digitalIO, anagalogIO else error output

is driven high, which means that received CloudBus frame

is corrupted.

Fig. 6. Schematic diagram of the PARSER module.

E. CONTROLLER with I/O PORT module

CONTROLLER module (Fig. 7) is the most important

module. It is responsible for implementing previously designed

control algorithm and for the communication with other end

modules via CloudBus protocol. CONTROLLER module

is synchronized by clk input and it gets data (func, vars,

digitalIO, analogIO) from PARSER module. Error input

delivers information about correctness of the incoming data.

Furthermore CONTROLLER module controls the 16 digital

inputs/output and 4 analog inputs/outputs (16-bit each of I/O).

Outside data transmission is made by dataOut, sendData

outputs. DataOut carries data to transmit by TXD module.

SendData triggers when data are ready to send.

For the research comparison CONTROLLER module does

not perform any control algorithm. It is important, because

of the different FPGAs architectures.

Fig. 7. Schematic diagram of the CONTROLLER module.

F. TRANSMITTER BUFFER module

TRANSMITTER BUFFER module (Fig. 8) preparing data

and encoding entire frame for TXD module. Module also

counts frame length and CRC checksum of CloudBus protocol

frame. TRANSMITTER BUFFER is synchronized by clk

clock, data input corresponds to data received from

CONTROLLER module (data contains CloudBus protocol

commands). Reset input clears TRANSMITTER BUFFER.

Two outputs connected with TXD module transfers byte

to send (byteForTransmit) and ready to send signal

(readyToSend).

Fig. 8. Schematic diagram of the TRANSMITTER BUFFER module.

G. TXD TIMER module

TXD TIMER module (Fig. 9) generates (clkLO) sending

clock for TXD module. clkMain input is external CLK input.

loRst is timer reset input.

Fig. 9. Schematic diagram of the TXD TIMER module.

H. TXD module

TXD module (Fig. 10) is responsible for data transmission

on TxD output line – outside of the end module. It takes 3

inputs: clkLo – sending clock, send – signal which starts byte

transmission and data – byte to send. Outputs are: TxD which

is connected with TXD OUTPUT as external transmission line

and loRST for counter/timer reset.

Fig. 10. Schematic diagram of the TXD module.

IV. RESEARCH RESULTS

The implementation and the synthesis was made using two

different development tools: Xilinx ISE Design Suite 14.7 –

synthesis to the following devices: Kintex-7 (XC7K70T),

Spartan 3E (XC3S1600E), Virtex-6 (XC6VLX75T);

Quartus II 13.1 – synthesis to the following devices:

Arria II GX (EP2AGX45DF29C4), Cyclone IV E (EP4CE

115F23I8L), Cyclone V (5CGXFC7D7F27C8). Source code

for both development platforms and for all devices was

customized to be universal (all devices used same source code).

Results of the synthesis for Xilinx devices of each module

is shown in Table II. Maximum percent of total register (Reg.)

resource usage was noted for Spartan 3E (XC3S1600E),

percent of the maximum occupied slices (Slices) and LUTs

(LUTs) for the Kintex-7 (XC7K70T). Furthermore, minimum

percent of resource usage was noted for Virtex-6

(XC6VLX75T) device.

TABLE II. RESOURCE USAGE FOR THE XILINX DEVICES

Implemented

modules

Device

Kintex-7

(XC7K70T)

Spartan 3E

(XC3S1600E)

Virtex-6

(XC6VLX75T)

Reg. Slices LUTs Reg. Slices LUTs Reg. Slices LUTs

RXD TIMER 21 14 41 21 17 29 21 14 47

RXD 31 14 28 32 33 41 31 13 28

RECEIVER BUFFER 266 93 289 266 199 264 265 127 289

PARSER 112 170 364 0 37 46 0 18 28

CONTROLLER 0 1 2 0 2 3 0 1 2

TRANSMITTER BUFFER 9 2 8 9 6 9 9 3 8

TXD TIMER 12 8 29 12 10 16 12 11 29

TXD 8 9 15 8 12 19 8 7 17

Total used 459 311 776 348 316 427 346 194 448
Total available 82000 10250 41000 29504 14752 29504 93120 11640 46560

Usage [%] 0,56 3,03 1,89 1,18 2,14 1,45 0,37 1,67 0,96

Results of the synthesis for Altera devices of each module

is shown in Table III. Maximum percent of total register (Reg.)

resource usage and percent of the maximum occupied LUTs

(LUTs) was noted for Arria II GX (EP2AGX 45DF29C4).

Minimum percent of total register (Reg.) resource usage was

noted for Cyclone V (5CGXF C7D7F27C8). Minimum percent

of LUTs (LUTs) for both Cyclone IV and Cyclone V devices.

TABLE III. RESOURCE USAGE FOR THE ALTERA DEVICES

Modules

Device

Arria II GX

(EP2AGX

45DF29C4)

Cyclone IV E

(EP4CE

115F23I8L)

Cyclone V

(5CGXF

C7D7F27C8)

Reg. LUTs Reg. LUTs Reg. ALMs

RXD TIMER 21 28 21 28 21 18

RXD 36 35 32 47 36 23

RECEIVER BUFFER 262 152 262 275 263 140

PARSER 113 32 113 155 113 73

CONTROLLER 3 2 3 3 3 2

TRANSMITTER BUFFER 9 2 9 9 9 5

TXD TIMER 12 16 12 16 12 11

TXD 8 15 8 17 8 10

Total used 464 282 460 550 465 282
Total available 36100 36100 114480 114480 225920 56480

Usage [%] 1,29 0,78 0,40 0,48 0,21 0,50

All of the presented results, for all of the selected devices

for comparison are oscillating around 1-2% of the total

available resource usage. Xilinx and Altera devices, compared

between each other or even within same manufacturer has got

different hardware architecture, so it is impossible to make

direct comparison of them. Cheap and small devices like Arria

II GX (EP2AGX45DF29C4) and Spartan 3E (XC3S1600E)

uses about 1% more of the available resources than other

presented platforms.

Average register usage for the Xilinx devices is 0,7%,

average for occupied slices is 2,28% and average for used

LUTs is about 1,43%. Average register usage for Altera

devices is 0,63% and average LUTs usage 0,59%.

This comparison allows to make conclusion that in this

specified implementation and synthesis, Altera device with

Quartus II development tool, gives a little bit more efficient

synthesis result that Xilinx ISE.

The most important research results is very low resource

usage for all of the devices, after implementing CloudBus

protocol. It allows to use approximately 98% of resource e.g.

implementing control algorithm.

V. CONCLUSIONS

This paper presented the implementation and synthesis

results of the CloudBus protocol for distributed embedded

systems on different FPGA platforms. It considers the resource

usage depending on the FPGA device and development

platform.

Presented research results allows to make conclusion,

that implementing CloudBus protocol on the FPGA platform

gives negligibly small resource usage. CloudBus protocol

implementation almost doesn’t limit the implementation

of the other control algorithms, on the same field-

programmable gate array. This feature is especially important

in large and complex embedded systems which needs lot

of the resources to preform designed control algorithm.

REFERENCES

[1] M. Adamski, A. Karatkevich and M. Wegrzyn “Design
of Embedded Control Systems”, Springer, 2005

[2] K. Krzywicki and G. Andrzejewski, “Concurrent process
synchronization in distributed systems”, Proceedings of the XV
International PHD Workshop – OWD 2013, 2013, pp.36-39

[3] J.P. Deschamps, G. Bioul and G. Sutter, “Synthesis of arithmetic
circuits: FPGA, ASIC and embedded systems”, Wiley, 2006

[4] H. Attiya and J. Welch, “Distributed Computing: Fundamentals,
Simulations and Advanced Topics”, J. Wiley Interscience, 2004

[5] V. K. Garg, “Elements of Distributed Computing”,
Wiley&Sons, 2002

[6] L. Shang and N.K. Jha, “Hardware-software co-synthesis of low
power real-time distributed embedded systems with dynamically
reconfigurable FPGAs”, ASP-DAC '02 Proceedings of the 2002
Asia and South Pacific Design Automation Conference, 2002,
pp. 345

[7] K. Krzywicki, G. Andrzejewski, “Interfejsy wymiany danych
w systemach rozproszonych”, in press

