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Abstract— In this paper, a CloudBus protocol for distributed 

embedded systems is presented. It provides a control mechanism 

for a number of processing units distributed in a network. 

The paper demonstrates a hardware implementation 

of a CloudBus protocol using FPGA. Furthermore, it considers 

the resource usage depending on the FPGA platform. 

Index Terms—Embedded Systems, Distributed Systems, 

FPGA, CloudBus protocol 

I.  INTRODUCTION 

Large and complex distributed embedded systems 

are difficult to design and implementation [1, 3, 6]. Moreover 

process synchronization in such systems are also complicated 

which often results in high load of the communication 

interfaces. CloudBus protocol [2, 7] proposed by authors 

allows to significant saving in the amount of the transmitted 

data between end modules of the distributed embedded system 

[4, 5] (especially when compared with the Modbus RTU 

or Profibus-DP protocol [7]). So far, the CloudBus protocol 

was implemented and tested on the distributed microcontroller 

platforms. This paper presents implementation of the CloudBus 

protocol on the FPGA platform. The implementation and the 

synthesis [3] was made using Hardware Description Language 

(HDL) – Verilog, under two different development tools: 

Xilinx ISE Design Suite 14.7 – synthesis to the following 

devices: Kintex-7 (XC7K70T), Spartan 3E (XC3S1600E), 

Virtex-6 (XC6VLX75T); Quartus II 13.1 – synthesis to the 

following devices: Arria II GX (EP2AGX45DF29C4), Cyclone 

IV E (EP4CE 115F23I8L), Cyclone V (5CGXFC7D7F27C8). 

Comparison of the resource usage was made 

for the different destination devices and development tools. 

In Section II CloudBus protocol is presented, Section III 

presents CloudBus protocol implementation with internal 

modules description. Section IV discuss research results 

for different FPGA devices. Section V, concludes the paper. 

II. CLOUDBUS PROTOCOL 

Presented CloudBus [2, 7] protocol (Fig.1) is one of the 

methods of the data exchange and concurrent process 

synchronization in the distributed systems. It realizes 

decentralized (distributed) control method, where all of the 

devices (modules), in designed system, are equal to each other. 

CloudBus is based on the dependence, that, data are only 

transferred between modules, when one of modules needs 

information (shared resource) from the outside of its own 

resource variables. Module sends (broadcasts) question to other 

modules about the state of the specified variable, 

e.g. (if y == 1?). The module which is responsible for this 

variable, sends the answer to the system, if and only if quested 

variable get previously quested state. This model 

of the communication, allows to significant savings in the 

amount of the transmitted data. 

 

Fig. 1. Schematic diagram of the CloudBus protocol. 

Basic data frame of the CloudBus protocol is shown 

in Table I. 

TABLE I.  CLOUDBUS PROTOCOL FRAME 

CNT FUNC VARS DATA CRC 
 

Fields of the protocol corresponds to: CNT – 1 byte 

for entire frame length; FUNC – command code (e.g. question 

about condition or simple answer to other of the modules); 

VARS and DATA represents binary array of the variables 

and their states (values); CRC – 1 byte of the CRC error 

checksum. 

III. IMPLEMENTATION 

The implementation of the CloudBus protocol in the FPGA 

devices required dividing system functionality into dedicated 

modules. Designed modules are shown in Fig. 2. 



 

 

 

 

Fig. 2. Schematic diagram of the end module unit. 

End module features: 

 16 digital inputs/outputs 

 4 analog inputs/outputs (16 bit) 

 serial communication interface 

 external clock input 

 

A. RXD TIMER module 

RXD TIMER module (Fig. 3) is double timer/counter. 

First counter (clkHi) with higher frequency is used for the 

sampling RXD INPUT line, second (slower) is used for the bit 

read from RXD INPUT line. clkMain input is external CLK 

clock input. hiRst and loRst are timer reset inputs. 

 

 

Fig. 3. Schematic diagram of the RXD TIMER module. 

B. RXD module 

RXD module (Fig. 4) is responsible for incoming 

communication from the outside of the end module. It retrieves 

data from RXD INPUT by input RxD line. Input line 

is sampled with clkHi clock frequency to check for incoming 

transmission. When it detects incoming data, clkLo clock 

counter is started for data read from RxD line and data bits 

are saved to data register. 

Furthermore, RXD module can reset timer by loRst output 

or inform by received line about completed successful packet 

receiving. Error line, delivers information about corruption 

of the received data (parity/CRC checksum error). 

 

 
 

Fig. 4. Schematic diagram of the RXD module. 

C. RECEIVER BUFFER module 

RECEIVER BUFFER module (Fig. 5) is 128-bit data 

buffer for received data by RXD module. It merges all single 

bytes to entire frame of the CloudBus protocol. Module 

is synchronized by clk clock. Data incoming by 8-bit in input 

and outgoing to PARSER module by 128-bit out output. 

Additional reset input for resetting module and ready output 

which gives information when buffer is full. 
 

 
 

Fig. 5. Schematic diagram of the RECEIVER BUFFER module. 

D. PARSER module 

PARSER module (Fig. 6) is synchronized by clk input. 

Data are received from RECEIVER BUFFER by 128-bit 

in input. PARSRER module is responsible for parsing received 

frame of the CloudBus protocol from RECEIVER BUFFER. 

When parsing is done, without any errors (frame length check 

and CRC checksum check) valid CloudBus data are set 



to outputs: func, vars, digitalIO, anagalogIO else error output 

is driven high, which means that received CloudBus frame 

is corrupted. 
 

 
 

Fig. 6. Schematic diagram of the PARSER module. 

E. CONTROLLER with I/O PORT module 

CONTROLLER module (Fig. 7) is the most important 

module. It is responsible for implementing previously designed 

control algorithm and for the communication with other end 

modules via CloudBus protocol. CONTROLLER module 

is synchronized by clk input and it gets data (func, vars, 

digitalIO, analogIO) from PARSER module. Error input 

delivers information about correctness of the incoming data. 

Furthermore CONTROLLER module controls the 16 digital 

inputs/output and 4 analog inputs/outputs (16-bit each of I/O). 

Outside data transmission is made by dataOut, sendData 

outputs. DataOut carries data to transmit by TXD module. 

SendData triggers when data are ready to send.  

For the research comparison CONTROLLER module does 

not perform any control algorithm. It is important, because 

of the different FPGAs architectures. 
 

 
 

Fig. 7. Schematic diagram of the CONTROLLER module. 

F. TRANSMITTER BUFFER module 

TRANSMITTER BUFFER module (Fig. 8) preparing data 

and encoding entire frame for TXD module. Module also 

counts frame length and CRC checksum of CloudBus protocol 

frame. TRANSMITTER BUFFER is synchronized by clk 

clock, data input corresponds to data received from 

CONTROLLER module (data contains CloudBus protocol 

commands). Reset input clears TRANSMITTER BUFFER. 

Two outputs connected with TXD module transfers byte 

to send (byteForTransmit) and ready to send signal 

(readyToSend). 

 

 
 

Fig. 8. Schematic diagram of the TRANSMITTER BUFFER module. 

G. TXD TIMER module 

TXD TIMER module (Fig. 9) generates (clkLO) sending 

clock for TXD module. clkMain input is external CLK input. 

loRst is timer reset input. 
 

 
 

Fig. 9. Schematic diagram of the TXD TIMER module. 

H. TXD module 

TXD module (Fig. 10) is responsible for data transmission 

on TxD output line – outside of the end module. It takes 3 

inputs: clkLo – sending clock, send – signal which starts byte 

transmission and data – byte to send. Outputs are: TxD which 

is connected with TXD OUTPUT as external transmission line 

and loRST for counter/timer reset. 
 

 
 

Fig. 10. Schematic diagram of the TXD module. 

IV. RESEARCH RESULTS 

The implementation and the synthesis was made using two 

different development tools: Xilinx ISE Design Suite 14.7 – 

synthesis to the following devices: Kintex-7 (XC7K70T), 

Spartan 3E (XC3S1600E), Virtex-6 (XC6VLX75T); 

Quartus II 13.1 – synthesis to the following devices: 

Arria II GX (EP2AGX45DF29C4), Cyclone IV E (EP4CE 

115F23I8L), Cyclone V (5CGXFC7D7F27C8). Source code 

for both development platforms and for all devices was 

customized to be universal (all devices used same source code). 

Results of the synthesis for Xilinx devices of each module 

is shown in Table II. Maximum percent of total register (Reg.) 

resource usage was noted for Spartan 3E (XC3S1600E), 

percent of the maximum occupied slices (Slices) and LUTs 

(LUTs) for the Kintex-7 (XC7K70T). Furthermore, minimum 

percent of resource usage was noted for Virtex-6 

(XC6VLX75T) device. 



TABLE II.  RESOURCE USAGE FOR THE XILINX DEVICES 

Implemented 

modules 

Device 

Kintex-7  

(XC7K70T) 

Spartan 3E 

(XC3S1600E) 

Virtex-6 

(XC6VLX75T) 

Reg. Slices LUTs Reg. Slices LUTs Reg. Slices LUTs 

RXD TIMER 21 14 41 21 17 29 21 14 47 

RXD 31 14 28 32 33 41 31 13 28 

RECEIVER BUFFER 266 93 289 266 199 264 265 127 289 

PARSER 112 170 364 0 37 46 0 18 28 

CONTROLLER 0 1 2 0 2 3 0 1 2 

TRANSMITTER BUFFER 9 2 8 9 6 9 9 3 8 

TXD TIMER 12 8 29 12 10 16 12 11 29 

TXD 8 9 15 8 12 19 8 7 17 

Total used 459 311 776 348 316 427 346 194 448 
Total available 82000 10250 41000 29504 14752 29504 93120 11640 46560 

Usage [%] 0,56 3,03 1,89 1,18 2,14 1,45 0,37 1,67 0,96 
 

Results of the synthesis for Altera devices of each module 

is shown in Table III. Maximum percent of total register (Reg.) 

resource usage and percent of the maximum occupied LUTs 

(LUTs) was noted for Arria II GX (EP2AGX 45DF29C4). 

Minimum percent of total register (Reg.) resource usage was 

noted for Cyclone V (5CGXF C7D7F27C8). Minimum percent 

of LUTs (LUTs) for both Cyclone IV and Cyclone V devices. 

TABLE III.  RESOURCE USAGE FOR THE ALTERA DEVICES 

Modules 

Device 

Arria II GX 

(EP2AGX 

45DF29C4) 

Cyclone IV E 

(EP4CE 

115F23I8L) 

Cyclone V 

(5CGXF 

C7D7F27C8) 

Reg. LUTs Reg. LUTs Reg. ALMs 

RXD TIMER 21 28 21 28 21 18 

RXD 36 35 32 47 36 23 

RECEIVER BUFFER 262 152 262 275 263 140 

PARSER 113 32 113 155 113 73 

CONTROLLER 3 2 3 3 3 2 

TRANSMITTER BUFFER 9 2 9 9 9 5 

TXD TIMER 12 16 12 16 12 11 

TXD 8 15 8 17 8 10 

Total used 464 282 460 550 465 282 
Total available 36100 36100 114480 114480 225920 56480 

Usage [%] 1,29 0,78 0,40 0,48 0,21 0,50 
 

All of the presented results, for all of the selected devices 

for comparison are oscillating around 1-2% of the total 

available resource usage. Xilinx and Altera devices, compared 

between each other or even within same manufacturer has got 

different hardware architecture, so it is impossible to make 

direct comparison of them. Cheap and small devices like Arria 

II GX (EP2AGX45DF29C4) and Spartan 3E (XC3S1600E) 

uses about 1% more of the available resources than other 

presented platforms.  

Average register usage for the Xilinx devices is 0,7%, 

average for occupied slices is 2,28% and average for used 

LUTs is about 1,43%. Average register usage for Altera 

devices is 0,63% and average LUTs usage 0,59%. 

This comparison allows to make conclusion that in this 

specified implementation and synthesis, Altera device with 

Quartus II development tool, gives a little bit more efficient 

synthesis result that Xilinx ISE. 

 

The most important research results is very low resource 

usage for all of the devices, after implementing CloudBus 

protocol. It allows to use approximately 98% of resource e.g. 

implementing control algorithm.  

V. CONCLUSIONS 

This paper presented the implementation and synthesis 

results of the CloudBus protocol for distributed embedded 

systems on different FPGA platforms. It considers the resource 

usage depending on the FPGA device and development 

platform.  

Presented research results allows to make conclusion, 

that implementing CloudBus protocol on the FPGA platform 

gives negligibly small resource usage.  CloudBus protocol 

implementation almost doesn’t limit the implementation 

of the other control algorithms, on the same field-

programmable gate array. This feature is especially important 

in large and complex embedded systems which needs lot 

of the resources to preform designed control algorithm. 
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